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Ground States of Two-Dimensional Quasicrystals 
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Hamiltonians for nonperiodic tilings are considered. It is shown that the 
quasicrystalline tiling obtained by the cut-and-strip method from a D-dimen- 
sional cubic lattice may be a ground state only if the tiling possesses a high 
orientational symmetry: the (2, D)-quasicrystal should have D-fold symmetry if 
D is even and 2D-fold symmetry if D is odd. For interactions of a finite range 
the restrictions are stronger: only a (2, 5)-quasicrystal (Penrose tiling) may be a 
stable ground state. 
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Recently a number  of two-dimensional  quasicrystalline alloys have been 
discovered. All of them have high planar  symmetry.  Three types of sym- 
metry  have been observed: eightfold,(1) ten fold,(2) and 12-fotd orientat ional  
symmetry.  (3) Nonsymmetr ica l  quasicrystals are not  known. H R E M  data  
show that  these alloys are constructed of elementary cells of two or three 
types. Fo r  example, a decagonal  quasicrystal is formed of two right-angle 
prisms having the two Penrose rhombi  as the bases. Since cell 
arrangements  in every layer are identical to each other, the compounds  can 
be considered as crystals in the z direction and 2D quasicrystals in the 
x y  plane. This z periodicity allows one to investigate tilings of the x y  plane 
only. While it had been assumed that  quasicrystals are metastable, the 
discovery of the thermodynamica l ly  equilibrium icosahedral  phases in the 
A1-Li -Cu  ~4) and A1-Cu-Fe  ~1~ alloys raised the question of whether a 
quasicrystal could be a g round  state. The aim of  this paper  is to answer 
this question and to explain why nonsymmetr ical  quasicrystals are not  
observed. 

H R E M  data  are indicative of  the fact that  the ground-s ta te  problem 
can be decomposed  into two independent  problems: a decora t ion problem 
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(how to arrange atoms in the cells) and a tiling problem (how to fill the 
plane by the given tiles of N types). I deal with the tiling problem only. It is 
useful to consider a tiling as a projection from the D-dimensional space. (5) I 
will use the following version of the generalized projection method(6): tiles 
are parallelograms obtained by the projection of the two-dimensional facets 
of a unit D-dimensional cube onto a two-dimensional subspace ~ called a 
tiling plane. The tiling plane is the real physical xy plane. The slopes of •2 
with respect to the basic vectors ej of ~D are supposed to be fixed. Thus, 
there are D(D - 1)/2 types of tiles. Their sides e) ') are the projections of ej 
onto ~2; e),) will be called tiling vectors. The geometry of the tiles is 
therefore governed by the slopes of ~2. Every tiling can be viewed as a pro- 
jection of some two-dimensional lattice surface onto the tiling plane ~2 (the 
vertices X of the lattice surface have integer coordinates: X ~ 7/D; they are 
projected onto the tile vertices). A tiling associated with a lattice surface 
confined in the standard strip is called a quasicrystalline tiling. The strip is 
parallel to the grid plane Rg 2, which does not necessarily coincide with the 
tiling plane ~2. The projections of ej onto ~2 are called the grid vectors e~ g). 
The cross section of the strip is a projection of the unit cube onto N,D-2, 
which is the subspace orthogonal to the grid plane ~2 (6) This projection is 
a convex polytope called a "window." Consider the following model: D and 
~2 are fixed, tiles are given by the projection and are supposed to be 
undeformable. There is an interaction between tiles (it may be of finite or 
infinite range, and a pair interaction or not). The energy of an arbitrary 
tiling is the total energy of the interaction among all tiles, fluctuations 
being neglected. The tiling is called a ground state if it provides an absolute 
energy minimum. The (2, 3)-quasicrystals differ radically from higher 
dimensional ones. In this paper I deal with the case D ~> 4 only. The 
ground-state problem for D = 3 is solved in ref. 7. 

Necessary conditions for a (2, D)-quasicrystal to be a ground state. 

1. A (2, D)-quasicrystal may be a ground state only if the tiling space 
~2 is such that the tiling vectors e~ ') are 

e~')= (2/D)l/2(cos(nj/D); sin(nj/D)), j =  1, 2,..., D D odd 

,~m=5a(cos(rtj/D);sin(~j/D)), j =  1, 3, 5 ..... D--1  Deven (1) 
(b(cos(gj/D); sin(rcj/D)), j = 2, 4, 6 ..... D 

where a 2 + b 2 = 4/D. 

So, if D is odd, then the tiling vectors form a D-fold symmetric star, 
and the tiles are rhombi. The subspace R2 satisfying this condition is 
unique. If D is even, then there is one real number b/a parametrizing 
allowed subspaces ~2. If b/a = 1, the tiling vectors form a symmetric star. 
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Condition 1 can be derived from the following speculation. The 
clusters shown in Fig. 1 can be found in a quasicrystalline tiling. Let the 
cluster in Fig. la be called a (+)-cluster, the cluster in Fig. lb a ( - ) -  
cluster. The point shown by the solid circle is the projection onto N2 of the 
vertex X e ZD of the lattice surface associated with the tiling. What is the 
projection of X onto ~D-29 Exploiting the fact that only three edges 
(namely those parallel to el, e2, e3) intersect in the point X ~ ~ ,  it is easy 

(a) / !  e~  - - ' ~  

/ 4~,4) : "~ 
I(~, ') ~ ~,4> I 

/ %  , , , o , / \  

tb, b ,  

Fig. 1. The (+)-  and (--)-clusters differing from one another by rearrangement of the three 
tiles (1 ,2) ,  (1 ,3) ,  (2 ,3) .  
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to show that X is located near the strip boundary. Hence X*, the projec- 
tion of X onto ~,0-2, is located near the boundary of the window. The 
window is a parallelotope in a ( D -  2)-dimensional space; it is bounded by 
( D -  3)-dimensional parallelotopes (facets). Each window facet is a projec- 

D 2, tion of a (D - 3)-dimensional facet of the unit cube onto ~ ,  , they can be 
labeled by the three integers i, j, k = 1, 2 ..... D: denote by Gij+k and G,~ k two 
parallel window facets projected from two parallel (D-3)-dimensional  
facets of the unit cube that are perpendicular to ei, ej, ek. So, the projec- 
tions of X in Fig. la onto N,D 2 are situated near the facet G~23, and the 
projection of X in Fig. lb near G{23. 

If there is no symmetry between different tiling vectors, all the tiles 
based on different pairs (ey>, e~ '>) are physically different. There is no 
physical reason for the interaction energies between, say, a pair of tiles 
(1, 2 ) - ( 2 ,  3)  and (1, 3 ) - ( 2 ,  3)  to be equal if the tiles (1, 2 )  and (1, 3)  
are not identical. Thus, if there is no symmetry, the energies of these two 
clusters E+ and E are not equal to each other. Let E+ > E_.  Perturb the 
quasicrystalline tiling in the following manner: take all the (+)-clusters 
and permute three tiles, ( 1 , 2 ) ,  (1, 3),  and (2, 3),  in every cluster to 
obtain the (-)-clusters (some authors call such local rearrangement "local 
phason" but I shall use the Russian term "perestroika"). The new tiling 
differs from the quasicrystalline one only by an infinite number of 
perestroikas. Every perestroika changes the coordinates of only one vertex, 
namely the central vertex in Fig. 1. This change is simply a translation by 
e 4 q-e 5 q- . .  'eD, SO if the projection of this vertex onto ~ D - - 2  initially lies 
inside the window near the facet G + then after perestroika it will lie near 123 

the facet G12 3, but outside the window. Bearing in mind that E+ > E_,  we 
conclude that perestroikas in all (+)-clusters yield a tiling that is not 
associated with any strip and has an energy lower than the energy of the 
quasicrystalline tiling. If E+ > E _ ,  then perform antiperestroikas in the 
(-)-clusters. So, the only chance for a quasicrystal to be a ground state is 
associated with the equality E+ - -E  , i.e., with the symmetry between tiles 
and tiling vectors. Considering such equalities for all facets G~k, we obtain 
condition 1. 

2. A (2, D)-quasicrystal may be a ground state only if the grid 
vectors e~ g) are given by Eq. (1). If D is odd, ~g2 must coincide with R,2; 
if D is even, they need not coincide, since a parameter a(')/b ~) in Eq. (1) 
determining e} ') need not be equal to a(g~/b (g) for eJg). 

3. A (2, D)-quasicrystal may be a ground state only for those 
positions of the window in R ,  D- 2 that generate a tiling with 2D-fold axis if 
D is odd and with D-fold axis if D is even. 

Condition 3 is not trivial: for example, in the D = 5 case the shift of 
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the window along the vector (1, 1, 1, 1, 1) breaks the decagonal symmetry. 
If a quasicrystal is a ground state, it is degenerate: if the shift of the window 
(phason shift) in R .  D-2 does not break the symmetry, the energy is not 
changed. Since not all shifts conserve the symmetry, the number of 
Goldstone modes is smaller than D - 2 .  These phason modes do not affect 
diffraction patterns or electronic, thermodynamic, and other physical quan- 
tities. The question arises: is there any other degeneracy of the ground state 
except the phason shift? If the answer is negative, then only ideal, nonper- 
turbed quasicrystalline tiling may be a ground state. If the answer is 
positive, then there is an alternative (below I exploit the one-to-one 
correspondence between filings of N2 and lattice surfaces in ND): 

(a) Perturbed surfaces that have the same energy as the ideal surface 
are confined in some strip parallel to the standard strip. 

(b) There exist perturbed surfaces deviating from the strip by any 
large distance without affecting the energy. 

In the former case only short-range noise (ripples on the ideal surface) 
does not change the energy. In the latter case with long-range pertur- 
bations, the strip can be distorted or bent without any change of the 
energy. This means that the quasicrystalline ground state is thermo- 
dynamically unstable (the reader desiring rigorous mathematics may 
consider case b as a definition of unstable ground states). The problem of 
an extra degeneracy is connected with Levitov's local rules approach. (8) An 
approximate qualitative correspondence is: 

no extra degeneracy *--, strong local rules exist 

situation a ~ no strong rules, but weak rules exist 

situation b ~ no weak rules 

Combining Levitov's results (s) with conditions 1-3, we obtain: 

4. In the case of a finite-range interaction a (2, D)-quasicrystal may 
be a stable ground state only if D = 5 and conditions 1-3 are fulfilled. 

I stress that condition 4 is only a necessary condition, in other words, 
it only means that if conditions 1-3 are not fulfilled, then the 
quasicrystalline tiling is not a ground state at all; if 1-3 are fulfilled and 
D r 5, then the quasicrystalline tiling may be an unstable ground state. I do 
not know sufficient conditions for D = 5. Moreover, the question arises of 
whether there is any nonperiodic quasicrystalline ground state (either 
stable or unstable). If D = 3, the answer is positive.(7) If D = 4, the answer is 
also positive (see below). If D/> 5, the answer is not known. 
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Fig. 2. Quas icrys ta l l ine  tiling with eightfold s y m m e t r y  (D = 4, a (') = b I'), a (g) = b(g)). Clusters  
ana logous  to those  in Fig. 1 are shaded.  

Sufficient conditions f o r  a (2, 4)-quasicrystal to be a ground state. 
Applying the necessary condit ions 1-3 to the D = 4 case, we see that  tiles of 
three types are possible: a small square [side b ('), Eq. (1)] ,  a large square 
(side a(')), and a para l le logram (sides a (t) and b ('), 45 ~ angle). In the par-  
t icular case a ~') = b (') there are two types of tiles: a square and a r hombus  
of 45 ~ angle. The  tiling itself should possess the fourfold symmet ry  
(a (g) r b (g)) or the eightfold symmet ry  ( a  (g) = b(g)) .  Note  that  a (') and b (') in 
Eq. (1) determining the tiling vectors need not  be equal  to a ~) and b (g) 

determining the grid vectors. The window is an octagon;  it is regular  if 
a ( g ) :  b (g). In contras t  to the case of  larger D, any shift of  the oc tagon  in 
~2  does not  b reak  the symmetry .  In this section I restrict considera t ion to 
the pair  interact ion between the tiles: 

E=! E 2 ,,, U~(r)~(,,)(r - r ' )  (2) 

the sum is taken over  all pairs of tiles, r, r '  e ~t  2 are the coordinates  of the 
tile centers in the tiling plane, a ( r ) = < l , 2 ) ,  ( 1 , 3 )  ..... < i , j )  ..... ( 3 , 4 )  
label the types of  tiles. Equa t ion  (2) contains  six in tera tomic  potent ials  
U<12>,<34>(r), U<12>,<12>(r), etc. Their  number  is six instead of 21 due to a 
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high tile symmetry. Consider the ground-state problem for the Hamiltonian 
(2). We should fix the sides of the tiles by fixing b(t)/a ('1 in Eq. (1). Then we 
should fix the grid space ~g2 by fixing b(g)/a (g). Consider various two- 
dimensional lattice surfaces in []~4 having the same average slopes as ~g2. 
The tiling obtained by the projection of the lattice surface providing an 
absolute minimum of the energy (3) is called a ground state at a fixed 
average slope. We claim that: 

5. If some convexity conditions imposed on U<0>,<~l>(r ) (see below) 
are fulfilled, then the ground state at fixed b(g)/a (g~ is the tiling obtained by 
the projection of the strip. It is a quasicrystalline tiling if 21/2b(g~/a ~g) is 
irrational, and it is periodic if 21/2b(gl/a(g) is rational. Any shift of the 
window in ~2, does not change the energy, i.e., there are two phason 
Goldstone modes. 

The convexity conditions are rather cumbersome, so I give here only 
one of them. Introduce a function e~(X): 2~ 4 ~ ~1, 

e,(X) = U23,23(R + e~ tl) - 2U23,23(R) + U23,z3(R -- e{4 t)) 

-~- U24,24(R -~- e{3 ')) - 2 U24,24(R ) -t- U24,24(R - e(30 ) 

+ U34, 34(R + e{3 ')) - 2U34,34(R) + U34,34(R - e(2 ')) 

+ 2]- U23,z4(R + �89 + e(4'))) + U23,24(R - k(e~'~ + e~4'~)) 

- U23,24(R + �89 ') - e~'))) - Uz3,24(R + �89 e(4')))] 

+ 2[ U23,34(R + �89 t) + e(4'))) + U23,34(R - -  �89 ') + e(4'))) 

1 (t)__ (,) U23,34(Rq_�89 - U23,34(R -3 l- 2(e4 e2 )) - 

+ 2[ Uz4,34(R + �89 ') + e~'))) + U24,34(R - -  l(e(2t)+ e (3 t ) ) )  

_ l ( e ( t )  -u:4,34(R+-~(e~'~ e~'~))-u:4,~4(R+~ ~ -e~'~))] 

X = ( X l ,  -~2, X3 ,  X4)  ~-~ R = X l e ~  t) -}- X'2e(2 t) -[- X3e~ t) -]- S4e(4 ') (3) 

Some potentials in Eq. (3) are equal to each other (details depend on 
whether a (') = b (') or not). There are a number of functions ej analogous to 
(3). The convexity conditions mentioned above are: all such functions ej(X) 
must be strictly positive for all X e Z 4 such that X~, X2, X3, X4 are positive. 

It is interesting to investigate perturbed states. The deviation of the 
energy from its minimal value can be expanded in series in powers of Vq~, 
where q~ ~ ~2 is the window shift and the gradient is taken over the coor- 
dinates in the tiling space ~2. Suppose that Vcp is small, i.e., in every large 
region of ~ the tiling is quasicrystalline obtained by the projection from 
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strips whose slopes differ slightly from those of ~2 Along with regular g' 
terms (V<0) 2, (V~0) 3, etc., the expansion contains the IV~o] term: 

E - Emi n = I E Ajn] dZx 

Aj = 21/~e) g~ 

- (1 - {n w/2}) es([nAj])) (4) 

where [x]  is the integer part; {x} = x - I x ] ;  0 s are constants describing 
the change of the area S of the tiling plane when projected onto the surface 
in the four-dimensional space; n ~ ~2 are four perpendiculars to the sides of 
the window (n~ =e* ,  nz---e~', n3 = e*, n 4 = e~'); the function el(X) is given 
in (4); e2, e3, and e4 are written analogously. The subscript j =  1,..., 4 is 
associated with Z4; c~--1, 2 with ~2; and a =  1, 2 with Rg ~. Looking at 
Eq. (4), would be easy to believe that any strip bending described by non- 
zero V~0 yields nonzero energy. But this is not the case: there exists a family 
of fields ~(r) such that the integrand in Eq. (4) vanishes identically. This 
means that the strip can be bent without any energy change. So, situation b 
holds. This fact is connected with the absence of weak local rules for the 
particular tiling with the octagonal symmetry. (8~9) 

1 have shown that the high symmetry of the quasicrystals is vital for 
their formation. I do not believe that an interaction of infinite range 
(RKKI,  van der Waals, etc.) plays an important role in real alloys. But it is 
easy to believe that there is actually an interaction between the third or the 
fifth neighbors. If this is the case, the experimentally observed quasicrystals 
with the 8-, 10-, and 12-fold symmetry are not ideal quasicrystals (in the 
sense mentioned above), but are associated with slowly bent strips. Suf- 
ficiently sharp peaks are observed only due to small Vq~ and finite sizes of 
the samples. Nevertheless, we suppose that necessary conditions 1-3 must 
be fulfilled, so nonsymmetric 2D quasicrystals cannot exist. 

It should be mentioned that all the above results have been derived for 
a tiling model. The main assumptions are: there are no fluctuations, no 
elasticity; the decoration and tiling problems are independent of each 
other; the interaction has no accidental symmetry (i.e., tiles of different 
types interact with different energies); and the interaction decreases rapidly 
when the distance between tiles increases. 
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